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Abstract
A proposed 250 Wt Radioisotope Thermophotovoltaic

(RTPV) power system for utilization in lunar exploration and
the subsequent exploration of Mars is described. Details of
emitter selection are outlined for use in a maintenance free
power supply that is productive over a 14-year mission life.
Thorough knowledge of a material’s spectral emittance is
essential for accurate modeling of the RTPV system. While
sometimes treated as a surface effect, emittance involves radia-
tion from within a material. This creates a complex thermal
gradient which is a combination of conductive and radiative
heat transfer mechanisms. Emittance data available in the litera-
ture is a valuable resource but it is particular to the test sample’s
physical characteristics and the test environment. Considera-
tions for making spectral emittance measurements relevant to
RTPV development are discussed. Measured spectral emittance
data of refractory emitter materials is given. Planned measure-
ment system modifications to improve relevance to the current
project are presented.

Introduction
NASA and Creare Incorporated of Hanover, New Hampshire

are currently engaged in a technology development program of
an RTPV power system to be used in lunar exploration missions
and the subsequent exploration of Mars. This effort follows
prior work by Orbital Sciences Corporation (Ref. 1) and others.
Table 1 contains performance details for both the beginning and
end (B.O.M. and E.O.M.) of a 10-year mission life. Mass esti-
mates are given for single and dual General Purpose Heat Source
(GPHS) configurations. Figure 1 shows an exploded view of the
configuration of interest with component parts labeled. The
energy source for this configuration is a single GPHS containing
plutonia fuel with a B.O.M. thermal output of 250 W.

The efficient conversion of emitted radiation is highly
dependent on the temperature of the emitter. This is a combined

effect of the T4 increase in radiated power (Stefan-Boltzmann
law) and a spectral shift towards higher energies as tempera-
ture increases (Wien's displacement law). To obtain the maxi-
mum efficiency the emitter temperature should be as high as
possible. The planned operating temperature for the GPHS
module is 1350 K. At this temperature the choice of materials
that will not sublimate to cooler surfaces over long time periods
is limited. It is desirable that the spectral power reaching the
PV array is high for convertible photon energies, E > Eg, where
Eg is the PV cell bandgap energy. However for the proposed
power system, emitter spectral efficiency is secondary to low
vapor pressure since evaporation of emitter material on to the
cold PV array limits the lifetime of the system.

Emittance Measurement

Emittance involves radiation from within a material and so
becomes more difficult to quantify as the thermal gradient
through the material increases (Ref. 2). The emittance data
available in the literature is particular to the test sample cha-
racteristics and the test environment. The surface quality,
material and thermal gradient of the test article must be known
to determine if the data can be appropriately applied to a model.

An opaque object’s spectral reflectance when measured at
an isotropic temperature can be used to determine spectral
emittance by Kirchhoff’s Law (Ref. 3), Fx = ax where Fx =
spectral emittance, ax = spectral absorptance. For conservation
of energy, ax + px + tix = 1 where px = spectral reflectance and
tix = spectral transmittance. Therefore, since tix = 0 for an
opaque object, Fx = (1 – px). This property is often considered
intrinsic because the same material will exhibit the same
spectral emittance regardless of thickness as long as it is
opaque and of the same composition, temperature and surface
geometry. However, if the temperature is not isotropic then the
spectral emittance will depend on the temperature change
through the material.
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TABLE 1.—PERFORMANCE COMPARISON OF SINGLE AND DOUBLE
GPHS CONVERTERS AT 15 AND 20 PERCENT EFFICIENCIES

[Mass estimates are conservative, engineering
driven improvements are anticipated.]

Dual GPHSa Single GPHS Notes
GPHS mass 3.212 1.606 kg
Converter mass 3.725 2.75 kg
Waste heat radiator mass 4.500 2.425 kg
Total mass 11.440 6.781 kg

Mass specific power at 15% il 6.56 5.53 W/kg
Mass specific power at 20% il 8.74 7.37 W/kg

Power output BOM at 15% il 75.00 37.50 We

Power output BOM at 20% il 100.00 50.00 We

Power output EOM at 15% il 60.04 30.02 We , with 0 material transfer,
10-year mission

Power output EOM at 20% il 80.06 40.03 We , with 0 material transfer,
10-year mission

aDual GPHS data (Ref. 6).

Figure 1.—Single GPHS power system, exploded view.
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It would be a daunting task to equilibrate a sample at
1350 K and take an accurate reflectance measurement.
Instead, a measurement is taken of the spectral emissive power
originating from the hot sample and it is referenced to a cali-
brated blackbody. Figure 2 is a schematic of the Vacuums
Emittance Measurement System (VEMS) at NASA, GRC. The
system measures the normal spectral emittance, En The fol-
lowing is the derivation for the formula used for VEMS data
reduction. The spectral radiation flux per wavelength per unit
area of an emitter of thickness d and the sample temperature
Ts, measured by the instrument is qds(k, Ts). It is equal to F
eS(k, Ts), where F is a constant and eS(k, Ts) is the spectral
emissive power. Likewise qb(k, Tb), the measured spectral
radiation flux of the blackbody at temperature Tb is F eb(k, Tb),

where eb(k, Tb) is the blackbody emissive power. Therefore,

the constant	
( ,
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q

b NTbb)

e (a '^ Tb
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h Planck constant
c0 the speed of light in a vacuum
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Equation (1) assumes that the temperature of the sample is
isotropic. Because of this there is a difficulty applying it to a
thermally anisotropic sample.

Radiation that leaves the sample comes not only from the
surface but from within the material. Thus, the emissive power
and emittance depends on the temperature change across the
material. This temperature is determined by the combined
effects of thermal conduction and radiation. The temperature
dependence is obtained from the solution of the following
energy equation.

dT
Qin=- k

th dr 
+ Q

rad (x ^ 	 (2)

Where Qin is the thermal power unit per unit area, kth is the
thermal conductivity and Qrad is the total radiative power per
unit area at position x. Equation (2) is solved for rare earth
materials in Reference 5.

Figure 2.—Diagram of the Vacuum Emittance Measurement System (VEMS) at GRC.
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Near the emitting surface the Qrad term in Equation (2) will
dominate and the temperature variation will be nonlinear.
However, far from the surface the conduction term in Equa-
tion (2) dominates and the temperature variation will be linear.

In Reference (2) the spectral emittance is defined in terms
of the temperature of the back (high temperature) side of the
emitter. The spectral emittance, assuming a linear temperature
variation across the emitter, a large absorptance coefficient
and small ΔT (the case for most metals) is approximated by
the following expression.

ε(λ , Tb )=[1 − R (λ)] exp[μsΔT] 	 (3)

Where R (λ) is the spectral reflectivity, μ S the dimen-

hc0 	 1.439 × 107 (K × nm)
=sionless photonic energy = λkT

s

Tb − TfΔT = the dimensionless temperature difference =	 ,
Tb

where Tb is the back side temperature and Tf is the front side
temperature.

Figure 3 shows emittance data calculated using room tem-
perature reflectance data for two tantalum samples of different
surface roughnesses. The reflectance was measured using a
Perkin-Elmer λ 950 dual beam spectrometer. Surface rough-
ness accounts for the apparent difference in measured emit-
tances. The smoother 0.4 mm sample has the lower emittance
due to an increased reflectance. Note that this measurement is
a total hemispherical measurement.

Figure 4 shows VEMS measurements in addition to the cor-
responding 1–R curve from Figure 3. This chart illustrates the
difficulty of determining emittance using formula (1). Values
are shown when calculated using both the cooler front surfaceλTs

	 and

Figure 3.—E= 1–-R for two tantalum samples at 300 K, equilibrated temperature.
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Figure 4.—Emittance data for 0.4-mm-thick tantalum sample, AT = 258 K.

Figure 5.—Emittance data for 3-mm-thick tantalum sample, AT = 287 K.
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temperature (top curve) and hot back surface temperature
(heavy curve). Temperature measurements were made using
0.005 in. diameter C type tungsten/tungsten-rhenium thermo-
couples. Contact of the thermocouples to the sample was
confirmed electrically by a continuity measurement between
the front and back thermocouples. The back surface tempera-
ture is not appropriate because even though the metal is clos-
est to this temperature through most of the emitter, radiative
cooling dominates near the surface where the emittance takes
place. The front surface temperature is an obviously inappro-
priate value because it produces emittances in excess of one.
All emittance occurs in a thickness of approximately one
micron, as can be demonstrated by the non-transmitting nature
of a film of that thickness. Despite this small dimension, the
outer most atoms of the metal are sufficiently cooled by radia-
tion that they do not well represent the temperature through
the emitting region. The bottom curve shown is the approxi-
mation of emittance using a linear temperature gradient only
(formula 3). This curve is in fairly good agreement with emit-
tance calculated using the back surface temperature.

Figure 5 shows the emittance data for the 3 mm thick sam-
ple. Of note is the greater difference between the emittance
based on Tf and the emittance based on Tb . This corresponds to
the greater AT across the sample. Also notice that the formula
(3) approximation does not agree with the back temperature as
well as with the thinner sample.

Measurement Modifications

In the optical cavity of a TPV converter, radiation is
reflected back to the emitter from the filter-PV array. This
radiation will heat the front surface of the emitter and thus
reduce the thermal gradient across the emitter. To approximate
the conditions that exist in the optical cavity of a TPV system,
the VEMS facility is being modified. The objective is to
measure the spectral radiation flux of the test sample through
an aperture in a chilled plate, which approximates the filter-
PV array. A highly polished, gold plated surface facing the
emitter would reflect energy back to the sample, thereby
raising the front surface temperature and lowering the AT
across the sample. The modified instrument would be able to
generate spectral radiation flux data, qs, for a given material,
AT and surface geometry, thereby approximating operational
conditions for a configuration of interest.

Summary

A brief description is given of the goals of the NASA/
Creare RTPV power system development program.

Methods to determine the spectral emittance of system
materials in order to model system energy flow are presented.

While emittance measurements are straight forward in
thermally isotropic materials, it is difficult when a significant
thermal gradient exists through the material of interest. Emit-
tance occurs within a region near the radiating surface that has
a severe thermal gradient created by locally dominate radiative
heat transfer. Methods dependant on a single temperature
value are therefore insufficient. A definition of an emittance
must include the temperature variation through the material. A
method to reduce temperature gradients is proposed. The
spectral radiation flux of the sample, qS(λ, T), is measured
through a plate that reflects energy back to the test sample.
Thus the thermal gradient can be controlled to the anticipated
RTPV conditions while qS(λ, T) is determined. This measure-
ment can be achieved on a 1 to 2 day cycle time in the VEMS
facility. This allows for the possibility of rapid emitter
optimization.
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